SELETIVIDADE DE HERBICIDAS A STYLOSANTHES CAPITATA E A S. MACROCEPHALA

Jaqueline Rosemeire Verzignassi¹, Francisco de Assis Rolim Pereira², Celso Dornelas Fernandes³, João Batista Vida⁴

RESUMO

Com o objetivo de avaliar a seletividade de herbicidas, aplicados em pré-emergência e em pós-emergência, às leguminosas Stylosanthes capitata e S. macrocephala, foram instalados ensaios em Neossolo Quartzarênico (antiga classificação: Areia Quartzosa) e Latossolo Vermelho Distroférrico em Campo Grande, MS. Para os produtos aplicados em pré-emergência, os ensaios foram instalados nos dois tipos de solo, para cada uma das espécies de leguminosas, e utilizados os seguintes ingredientes ativos: diclosulam (35,28 g i.a./ha), flumetsulan (120 g i.a./ha), flumioxazin (50 g i.a./ha), imazaquin (30 g i.a./ha), smetolachlor (1.920 g i.a/ha) e sulfentrazone (600 g i.a./ha). Para os herbicidas aplicados em pós-emergência, os ensaios foram instalados somente em Latossolo Vermelho Distroférrico, mas para ambas as espécies da leguminosa, e utilizados: flumioxazin (25 g i.a./ha), 2,4-D (840 g i.a./ha), 2,4-D (536 g i.a./ha), bentazon/acifluorfen-sódio (450 g i.a./ha), acifluorfensódio/bentazon (240 g i.a./ha), chlorimuron-ethyl (17,5 g i.a./ha), fomesafen (250 g i.a./ha), imazethapyr (100 g i.a./ha) e lactofen (100 g i.a./ha). No caso dos produtos aplicados em préemergência, as avaliações foram baseadas em percentagem de fitotoxicidade dos produtos através do método visual aos 10, 20, 30 e 40 dias após a aplicação dos tratamentos (DAT). Para os produtos de aplicação em pós-emergência, as avaliações foram efetuadas baseadas no mesmo critério utilizado para os produtos aplicados em pré-emergência, porém aos 15 e 40 DAT. Determinou-se, também, ao final dos ensaios, as biomassas verde e seca das plantas do experimento em Latossolo Vermelho Distroférrico. Os resultados permitiram selecionar, sob Latossolo Vermelho Distroférrico, os herbicidas aplicados em pré-emergência imazaquin e diclosulam, com sintomas leves de fitotoxicidade, sem comprometimento da produtividade de biomassa das plantas das duas espécies de Stylosanthes. Para o solo de textura arenosa, nenhum dos produtos aplicados em pré-emergência foi seletivo para as plantas, apresentando alta fitotoxicidade para ambas as espécies da leguminosa. No caso dos produtos aplicados em pós-emergência, os herbicidas testados não proporcionaram valores altos de fitotoxicidade e os que mais afetaram as plantas foram 2,4-D e flumioxazin, seguidos por chlorimuron-ethyl. acifluorfen-sódio/bentazon herbicidas lactofen, imazethapyr, fomesafen, bentazon/acifluorfen-sódio, em pós-emergência, mostraram-se promissores no controle de plantas daninhas em áreas de produção de sementes das espécies de leguminosas.

Palavras-chave: estilosantes, fitotoxicidade, leguminosa forrageira.

SELECTIVITY OF HERBICIDES FOR Stylosanthes capitata and S. macrocephala

ABSTRACT

Aiming to study the herbicides selectivity at pre-emergence: diclosulam (35,28 g a.i./ha), flumetsulan (120 g a.i./ha), flumioxazin (50 g a.i./ha), imazaquin (30 g a.i./ha), s-metolachlor (1.920 g a.i./ha) and sulfentrazone (600 g a.i./ha) and post-emergence:

¹Pesquisadora Doutora Capes/ProDoc, Universidade Estadual de Maringá - UEM. Av. Colombo, 5790, Departamento de Agronomia, 37020-900, Maringá, PR, fax (44) 261-4732, <u>jrverzignassi@uem.br</u>

²Professor Doutor, Universidade para o Desenvolvimento do Estado e da Região do Pantanal - UNIDERP. Campo Grande, MS. <u>franciscopereira@mail.uniderp.br</u>

³Pesquisador Doutor, Embrapa Gado de Corte e UNIDERP. Campo Grande, MS. <u>celsof@cnpgc.embrapa.br</u>
⁴Professor Doutor, UEM. jbvida@uem.br

flumioxazin (25 g a.i./ha), 2,4-D (840 g a.i./ha), 2,4-D (536 g a.i./ha), bentazon/acifluorfensodium (450 g a.i./ha), acifluorfen-sodium/bentazon (240 g a.i./ha), chlorimuron-ethy (117,5 g a.i./ha), fomesafen (250 g a.i./ha), imazethapyr (100 g a.i./ha) and lactofen (168 g a.i./ha), in Stylosanthes capitata and S. macrocephala, field trails were carried out in Quartzpsament soil and Haplorthox soil in Campo Grande, Mato Grosso do Sul State, Brazil. The pre-emergence trials were installed in the two soil types and for each one of the legume species and, to the post-emergence, the trails were only installed in Haplorthox soil and for both species of the forage legume. The evaluations were phytotoxicity of the herbicides through visual assessment at 10, 20, 30 and 40 days after the application of the treatments (DAT), and 15 and 40 DAT to the post-emergent one. In Haplorthox soil, it was selected the products imazaquin and diclosulam. In Quartzpsament soil, none of the applied herbicides was selective for the plants. To the post-emergent ones, the herbicides tested did not provide high levels of phytotoxicity and the ones that more affected the plants were 2,4-D, flumioxazin, followed by chlorimuron-ethyl. The herbicides lactofen, imazethapyr, fomesafen, sodium/bentazon and bentazon/acifluorfen-sodium, in post-emergence, showed promising results to control weeds in areas of Stylosanthes seed production.

Key words: stylo, phytotoxicity, forage legume.

INTRODUÇÃO

A pecuária bovina brasileira apresenta amplo potencial econômico, com o maior rebanho comercial do mundo, distribuído em vasta extensão territorial e representando grande importância na economia no País (Corrêa, 2000). A expansão e a sustentabilidade dos sistemas de produção de carne e de leite a pasto são condicionadas pela disponibilidade de sementes das plantas forrageiras e o desenvolvimento da indústria dessas sementes apresenta relevância estratégica para o Brasil (Souza, 1991). A produção dessas sementes vem alcançando níveis tecnológicos coerentes com a importância da atividade e as técnicas rudimentares, com baixo controle de qualidade, estão aos poucos perdendo espaço, sobretudo considerando que uma boa semente deve apresentar alto vigor e boa qualidade sanitária, não devendo conter sementes de plantas daninhas.

Em levantamento realizado por Mascarenhas et al. (1999), em pastagens de baixa produtividade na Região Nordeste do Pará, foram detectadas 118 espécies de plantas daninhas, abrangendo 34 famílias. Considerando que naquela Região as roçadas, manuais ou mecânicas, constituem os métodos de controle de plantas daninhas mais empregados, as medidas adotadas não têm sido suficientes para evitar o declínio do rendimento das pastagens provocado por essas espécies. Dias Filho (1998) relata que, além do manejo da pastagem, a competição imposta pelas plantas daninhas, constitui-se em fator importante no processo de degradação das pastagens. Pitelli (1989) descreve que o distúrbio provocado pelo pastoreio, com carga excessiva de animais, acelera a adaptação e a proliferação de algumas espécies daninhas.

O método de controle químico apresenta-se como técnica eficaz no controle das plantas daninhas nas pastagens, bem como nos campos de produção de sementes de forrageiras. Entretanto, o herbicida utilizado deve ser totalmente seletivo à planta forrageira, não apresentando danos por fitotoxicidade que prejudiquem o seu desenvolvimento nem o seu rendimento, permitindo-lhe desenvolvimento fenológico normal.

Rossi et al (2000), visando avaliar a seletividade de herbicidas às pastagens formadas de capim-elefante e de "coastcross", concluíram que, dependendo do herbicida, pode haver redução na produção de matéria seca das forrageiras.

A leguminosa forrageira "estilosantes Campo Grande", lançada pela Embrapa Gado de Corte, em 2000, e composta pela mistura física de *Stylosanthes capitata* e de *S*.

macrocephala, apresenta-se como boa alternativa para a suplementação protéica de bovinos de corte, através do seu uso em consorciações com braquiárias e como alternativa para a recuperação das pastagens no Brasil Central Pecuário, onde cerca de 80% das pastagens cultivadas apresenta algum nível de degradação (Verzignassi & Fernandes, 2002).

No entanto, alguns aspectos referentes à produção de sementes da leguminosa ainda encontram-se sem resposta e demandam esclarecimentos. Os campos de produção de sementes da leguminosa, geralmente, são conduzidos em áreas que apresentam número elevado de sementes de plantas daninhas por metro quadrado. A quantidade de sementes que germinam e a diversidade de espécies causam perdas importantes na produção, reduzindo a produtividade e/ou prejudicando a qualidade pela contaminação das sementes da forrageira por propágulos de plantas daninhas, o que pode levar à condenação do produto final.

Não existem dados na literatura para esclarecer as dúvidas relativas à seletividade dos herbicidas em áreas de produção de sementes desta leguminosa. Este trabalho teve como objetivo avaliar a seletividade de herbicidas, aplicados em pré e pós-emergência, para o controle de plantas daninhas dicotiledôneas em áreas de produção de sementes de *Stylosanthes capitata* e *S. macrocephala*.

MATERIAL E MÉTODOS

Os ensaios, com a utilização de herbicidas aplicados em pré-emergência, foram instalados na Embrapa Gado de Corte, em Latossolo Vermelho Distroférrico (51% de argila), e na Universidade para o Desenvolvimento do Estado e da Região do Pantanal-UNIDERP, em Neossolo Quartzarênico (antiga classificação: Areia Quartzosa), contendo 11% de argila, 86% de areia e 3% de silte. Para os herbicidas aplicados em pós-emergência, os ensaios foram instalados apenas em Latossolo Vermelho Distroférrico. Os experimentos foram conduzidos em 2002, sendo efetuados para cada uma das duas espécies de *Stylosanthes* (*S. capitata* e *S. macrocephala*).

O delineamento experimental utilizado foi blocos ao acaso, com quatro repetições, com as parcelas medindo 3 m x 5 m e com área útil de 8 m² (2 m x 4 m). A semeadura da leguminosa foi efetuada à lanço, em solo gradeado, e na quantidade de 2,5 kg de sementes por hectare

Os herbicidas utilizados foram os disponíveis no mercado e amplamente utilizados para o controle de plantas daninhas da soja, cuja eficiência no controle das plantas daninhas e seletividade para a soja estão estabelecidas. Os referidos produtos foram compilados por Pereira et al. (2001).

Para os produtos aplicados em pré-emergência, os ingredientes ativos e as respectivas concentrações foram os seguintes: diclosulam (35,28 g i.a./ha), flumetsulan (120 g i.a./ha), flumioxazin (50 g i.a./ha), imazaquin (30 g i.a./ha), s-metolachlor (1.920 g i.a./ha) e sulfentrazone (600 g i.a./ha), aplicados imediatamente após a semeadura. Desta forma, foram efetuados seis tratamentos, além da testemunha (água), para cada uma das espécies da leguminosa e para cada tipo de solo.

Para os produtos de aplicação em pós-emergência, os herbicidas utilizados e as suas respectivas concentrações foram: flumioxazin (25 g i.a./ha), 2,4-D (840 g i.a./ha), 2,4-D (536 g i.a./ha), bentazon/acifluorfen-sódio (450 g i.a./ha), acifluorfen-sódio/bentazon (240 g i.a./ha), chlorimuron-ethyl (17,5 g i.a./ha), fomesafen (250 g i.a./ha), imazethapyr (100 g i.a./ha) e lactofen (168 g i.a./ha), aplicados aos 30 dias após a emergência, quando as plantas do estilosantes apresentavam-se em estádio de primeiro trifólio e acrescentou-se uma testemunha (água). O herbicida 2,4-D foi incluído no ensaio em razão da sua utilização por alguns produtores de sementes da leguminosa em Mato Grosso do Sul, os quais relatam a sua baixa fitotoxicidade ao *Stylosanthes*, com posterior recuperação das plantas.

Para a aplicação dos tratamentos utilizou-se pulverizador costal de pressão constante, pressurizado por CO₂, munido de uma barra de 2,0 m com quatro bicos tipo leque 110.03,

espaçados em 0,5 m e com volume de calda de 200 L/ha.

As condições climáticas na Embrapa Gado de Corte no período em que o ensaio permaneceu no campo, de 07/03 a 18/04, foram 291,1mm de chuva acumulada e temperatura média 26,38°C. No caso do experimento conduzido na UNIDERP, as condições foram 186,7 mm de chuva acumulada e 25,64°C de temperatura média.

As avaliações de fitotoxicidade para os tratamentos com herbicidas aplicados em préemergência foram efetuadas aos 10, 20 e 30 e 40 dias após a aplicação dos tratamentos (DAT), através do método visual, em percentagem de fitotoxicidade, onde: 0 = nenhum sintoma visível de injúria do herbicida sobre a planta forrageira e 100% = morte total da planta. Quarenta por cento (40%) foi considerado como padrão máximo aceitável, situação em que a forrageira torna-se passível de recuperação, sem perspectivas de redução no rendimento da planta. Para os pós-emergentes, as avaliações foram baseadas nos mesmos critérios, porém efetuadas aos 15 e 40 DAT.

Aos 70 dias após a emergência, 0,25 m² de cada parcela útil foi cortada (1 cm acima do nível do solo), para determinar as biomassas verde e seca das plantas. As referidas avaliações foram efetuadas apenas nos experimentos conduzidos em Latossolo Vermelho Distroférrico.

Os resultados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey, em nível de 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Nos ensaios com os herbicidas aplicados em pré-emergência, em Latossolo Vermelho Distroférrico e para ambas as espécies de *Stylosanthes*, os ingredientes ativos imazaquin e diclosulam apresentaram boa seletividade para a leguminosa (Tabela 1). Na avaliação efetuada aos 10 DAT no ensaio de *S. capitata*, a percentagem de fitotoxicidade foi 41,25 e 52,5 para imazaquin e diclosulam, respectivamente. No entanto, as plantas recuperaram-se de forma que, ao final do período de avaliação (40 DAT), apresentaram valores de 6,25 e 5%, respectivamente, não diferindo da testemunha não tratada. Resultados semelhantes ocorreram para *S. macrocephala*, cujos valores foram 15 e 35% aos 10 DAT e 10 e 7,5% aos 40 DAT, respectivamente para imazaquin e diclosulan. Brighenti et al. (2002) também encontraram bons resultados de seletividade com a utilização de imazaquin na cultura da soja, na dose recomendada para a cultura, a qual não proporcionou problemas de injúria grave aos 17 DAT, com a fitotoxicidade não ultrapassando 12% e apresentando redução dos danos para 5% aos 45 DAT.

A biomassa verde das plantas apresentou os maiores valores para os tratamentos com os produtos imazaquin e diclosulam (Tabela 1), apresentando correlação negativa de 0,83 (p<0,01) com a fitotoxicidade e demonstrando o efeito deletéreo do herbicida no crescimento e no desenvolvimento da planta.

Em Neossolo Quartzarênico, todos os herbicidas aplicados em pré-emergência causaram alta toxicidade para ambas as espécies da leguminosa (Tabela 2), apresentando valores, aos 40 DAT, de 66,3 a 99,5% para *S. capitata* e de 67,5 a 98,75% para *S. macrocephala*. Todos os valores encontrados foram maiores que 40% e, em nenhum caso, houve recuperação das plantas. Desta forma, nenhum produto foi promissor para ser utilizado nas condições de solo arenoso. O fenômeno, explicado por Aldrich & Kremer (1997), ocorre em função da textura arenosa do solo, a qual proporciona que as moléculas dos produtos permaneçam livres na solução do solo e prontamente disponíveis para a absorção pelas plantas da leguminosa e pelas plantas daninhas. Em solo com textura tendendo à argilosa, as moléculas dos herbicidas permanecem adsorvidas nos colóides do solo, estando menos disponíveis para a pronta absorção pelas plantas, sendo necessário o processo de dessorção para retornarem à solução do solo.

Os produtos aplicados em pós-emergência foram menos fitotóxicos que os utilizados em pré-emergência e as duas espécies de *Stylosanthes* não apresentaram comportamento similar frente aos diferentes ingredientes ativos dessa modalidade (Tabela 3). Os herbicidas que mais afetaram as plantas foram 2,4-D, flumioxazin e chlorimuron-ethyl, com valores, aos 40 DAT, de até 36,25% para *S. capitata* e de até 55% para *S. macrocephala*, demonstrando a maior sensibilidade desta última espécie aos produtos testados.

Aos 40 DAT, o produto 2,4-D apresentou toxicidade de 36,25 e 30% para *S. capitata* e de 55 e 45% para *S. macrocephala* (Tabela 3). Os demais herbicidas, em pós-emergência (lactofen, imazethapyr, fomesafen, acifluorfen-sódio/bentazon e bentazon/acifluorfen-sódio), apresentaram valores aceitáveis de toxicidade para ambas as espécies da forrageira aos 40 DAT, variando de 7,5 a 17,5% de toxicidade para *S. capitata* e de 5 a 26,25% para *S. macrocephala* e mostrando-se promissores para serem utilizados em áreas de produção de sementes da leguminosa. Conforme ocorreu para os herbicidas aplicados em pré-emergência, aos 40 DAT as plantas apresentaram certa recuperação em relação aos valores encontrados quando da primeira avaliação (15 DAT).

As produtividades de biomassas verde e seca dos herbicidas aplicados em pósemergência em *S. macrocephala*, apresentaram correlação negativa com a variável fitotoxicidade (r=-0,60, p<0,01), demonstrando a maior suscetibilidade da espécie aos herbicidas pós-emergentes.

Há, portanto, necessidade da verificação do comportamento das espécies, frente aos pós-emergentes, nos estádios mais avançados da cultura (30, 60 e 90 dias), no caso de haver necessidade de reaplicação dos produtos. Além disso, faz-se necessário a verificação da influência desses produtos na qualidade e na quantidade das sementes produzidas, características nas quais se baseia a tecnologia de produção de sementes.

Os ingredientes ativos imazaquin (30 g i.a./ha) e diclosulam (35,28 g i.a./ha) foram seletivos para aplicações em pré-emergência em *S. capitata* e em *S. macrocephala* em Latossolo Vermelho Distroférrico. Nenhum herbicida aplicado em pré-emergência foi seletivo para *S. capitata* e para *S. macrocephala* em Neossolo Quartzarênico. Em Latossolo Vermelho Distroférrico, os herbicidas lactofen (168 g i.a./ha), imazethapyr (100 g i.a./ha), fomesafen (250 g i.a./ha), acifluorfen-sódio/bentazon (240 g i.a./ha) e bentazon/acifluorfen-sódio (450 g i.a./ha) mostraram-se promissores no controle de plantas daninhas quando aplicados em pósemergência em *S. capitata* e em *S. macrocephala*.

LITERATURA CITADA

- ALDRICH, R.J.; KREMER, R.J. **Principles in weed management**. 2. Ed. Iowa: Iowa State University Press, 1997. 455p.
- BRIGHENTI, A.M.; ADEGAS, F.S.; BORTOLUZI, E.S. ALMEIDA, L.A.; VOLL, E. Tolerância de genótipos de soja aos herbicidas trifluralin e imazaquin. **Planta Daninha**, v.20, n.1, p.63-69. 2002.
- CORRÊA, A.N.S. Análise retrospectiva e tendências da pecuária de corte no Brasil. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 37, 2000, Viçosa. **Anais...** Brasília: SBZ, 2000. p.181-205.
- DIAS FILHO, M.B. Pastagens cultivadas na Amazônia Oriental brasileira: processos e causas de degradação e estratégias de recuperação. In: DIAS, L.E.; MELLO, J.W.V. de (eds) **Recuperação de áreas degradadas**. Viçosa: UFV, p.135-147, 1998.

- MASCARENHAS, R.E.B.; MODESTO JUNIOR, M.S.; DUTRA, S.; SOUZA FILHO, A.P.S.; TEIXEIRA NETO, J.F. Plantas daninhas de uma pastagem cultivada de baixa produtividade no nordeste paraense. **Planta Daninha**, v.17, n.2, p.399-418. 1999.
- PEREIRA, F.A.R. Controle químico de plantas daninhas na cultura da soja em Mato Grosso do Sul. Campo Grande: UNIDERP. **Comunicado técnico**, n.1. 2001. 33p.
- PITELLI, R.A. Ecologia de plantas invasoras em pastagens. In: SIMPÓSIO SOBRE ECOSSISTEMA DE PASTAGEM, 1, 1989. **Resumos...** Jaboticabal: FUNEP, 1989. p.69-86.
- ROSSI, P.; MACIEL, C.D.G.; MARTINS, D.; COSTA, C. Seletividade de herbicidas aplicados em pós-emergência em capim-elefante (*Pennisetum purpureum*) e *Cynodon dactylon* cv. Coastcross. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTAS DANINHAS, 22, 2000, Foz do Iguaçu: **Resumos...** Brasília: SBCPD, 2000. p.357-358.
- SOUZA, F.H.D. de. Produção de sementes de gramíneas forrageiras tropicais. São Carlos: Embrapa Pecuária Sudeste. **Documento**, n.30. 2001. 43p.
- VERZIGNASSI, J.R.; FERNANDES, C.D. Estilosantes Campo Grande: situação atual e perspectivas. Campo Grande: Embrapa Gado de Corte. **Comunicado Técnico**, n.70. 2002. 4p.

Tabela 1 – Fitotoxicidade (%) observada aos 10, 20, 30 e 40 dias após a aplicação dos tratamentos (DAT) de herbicidas em pré-emergência e produtividade (kg ha⁻¹) de biomassas verde e seca de *Stylosanthes capitata* e de *S. macrocephala* em Latossolo Vermelho Distroférrico. Campo Grande, MS, 2002.

Tratamento	Stylosanthes capitata							Stylosanthes macrocephala						
	Fitotoxicidade (%) DAT				Bion	nassa		Fitotoxicidade (%)				Biomassa		
					(kg ha ⁻¹)			\mathbf{D}_{A}	(kg ha ⁻¹)					
	10	20	30	40	Verde	Seca	10	20	30	40	Verde	Seca		
diclosulam	52,50*AB	47,50C	33,75BC	5,00C	484,2A	182,6A	35,00D	22,50C	21,25C	7,50C	778,6A	334A		
flumetsulan	41,25B	55,00BC	45,00B	58,75B	333,4A	116,2AB	57,50C	70,00B	61,25B	55,00B	407,6CD	164BC		
flumioxazin	81,25A	97,00A	97,00A	94,00A	23B	8,8B	92,50A	95,25A	94,50A	94,00A	120,4E	47,6D		
imazaquin	41,25B	23,75CD	17,50CD	6,25C	362,2A	141,2A	15,00E	8,75C	5,00C	10,00C	737,6A	312A		
s-metoalachlor	75,00AB	90,00A	87,50A	92,50A	178,2AB	65AB	73,75B	83,75AB	87,50AB	91,25A	230D	106,6CD		
sulfentrazone	77,50A	83,75AB	81,25A	94,50A	179,6AB	67,4AB	66,25BC	68,75B	62,50B	56,25B	626,6B	255,6AB		
testemunha	0C	0D	0D	0C	492,2A	197,4A	0F	0C	0C	0C	843A	344A		
CV (%)	29,75	25,03	22,35	16,91	32,92	29,36	12,2	21,99	24,65	23,46	24,51	24,29		

^{*} Médias de quatro repetições. Médias nas colunas seguidas pela mesma letra não diferem entre si pelo teste de Tukey em nível de 5% de significância. Para a análise estatística, os dados foram transformados em $(x+0,5)^{0,5}$

Tabela 2 – Fitotoxicidade (%) observada aos 10, 20, 30 e 40 dias após a aplicação dos tratamentos (DAT) de herbicidas em pré-emergência de *Stylosanthes capitata* e de *S. macrocephala* em Neossolo Quartzarênico. Campo Grande, MS, 2002.

Tratamento			nes capitata idade (%)		Stylosanthes macrocephala Fitotoxicidade (%)						
		D	AT		DAT						
	10	20	30	40	10	20	30	40			
diclosulam	46,30*D	60,00B	67,50D	66,30C	41,30C	48,75D	60,00C	67,50C			
flumetsulan	52,50CD	66,30B	76,30C	80,00B	53,80B	72,50C	82,50B	77,50B			
flumioxazin	77,50AB	96,30A	98,80A	98,80A	90,00A	95,00A	98,75A	98,75A			
imazaquin	51,30CD	63,80B	72,50CD	75,00BC	55,00B	66,25C	66,25C	76,25BC			
s-metoalachlor	63,80BC	86,30A	88,80B	93,80A	61,30B	84,50B	90,00AB	93,75A			
sulfentrazone	86,30A	92,50A	93,80AB	99,50A	86,30A	91,25AB	97,50A	97,5A			
testemunha	0E	0C	0E	0D	0D	0E	0D	0D			
CV (%)	14,43	8,91	4,58	6,82	7,63	5,91	6,07	5,83			

^{*} Médias de quatro repetições. Médias nas colunas seguidas pela mesma letra não diferem entre si pelo teste de Tukey em nível de 5% de significância. Para a análise estatística, os dados foram transformados em $(x+0,5)^{0,5}$

Tabela 3 – Fitotoxicidade (%) observada aos 15 e 40 dias após a aplicação dos tratamentos (DAT) de herbicidas em pós-emergência e produtividade (kg ha⁻¹) de biomassas verde e seca de *Stylosanthes capitata* e de *S. macrocephala* em Latossolo Vermelho Distroférrico. Campo Grande, MS, 2002.

Tratamento		Stylosanthe	Stylosanthes macrocephala					
	Fitotoxicidade (%) DAT		Biomassa (kg ha ⁻¹)		Fitotoxicidade (%) DAT		Biomassa (kg ha ⁻¹)	
	15	40	Verde	Seca	15	40	Verde	Seca
flumioxazin	60,00*A	12,50BCD	400,4 ^{NS}	168,8 ^{NS}	47,50AB	21,25C	481,8 ^{NS}	192,4AB
2,4-D	48,75AB	36,25A	494,8	207,8	65,00A	55,00A	404,2	162,4B
2,4-D	37,50BCD	30,00AB	568	233,6	63,80A	45,00B	611	187,2AE
bentazon/acifluorfen-sódio	30,00BCD	17,50ABCD	372,2	158,6	13,80C	7,50D	909,4	358AB
acifluorfen-sódio/bentazon	27,50CD	7,50CD	656	297,8	23,80BC	18,75C	602,2	259AB
chlorimuron-ethyl	43,75ABC	25,00ABC	643	273,8	62,50A	53,75A	597,6	259,2AF
fomesafen	22,50D	12,50BCD	449	197,8	30,00BC	26,25C	675,8	290,2AE
imazethapyr	25,00CD	11,25BCD	522,4	219,6	13,80C	7,50D	915,6	396A
lactofen	25,00CD	16,25ABCD	609,2	276,2	13,80C	5,00D	762,2	313AB
testemunha	0E	0E	693,2	290,2	0C	0E	760,8	328,8AI
CV (%)	26,53	51,96	22,62	21,64	37,48	23,68	17,88	17,23

^{*} Médias de quatro repetições. Médias nas colunas seguidas pela mesma letra não diferem entre si pelo teste de Tukey em nível de 5% de significância. Para a análise estatística, os dados foram transformados em (x+0,5) 0.5 NS = não significativo

